Facile Synthesis of Linear and Angular 2-Methylfurobenzopyranone

Y. Jayaprakash RAO and G. L. David KRUPADANAM*
Department of Chemistry, Osmania University, Hyderabad-500007, India
(Received March 31, 1993)

Synopsis. A route for the synthesis of 2-methyl-furobenzopyranone by the oxidative cyclization of sodium salt of 7-hydroxy-6 or 8-allyl-4*H*-[1]benzopyran-4-one using PdCl₂(PhCN)₂ complex has been developed.

Furo[1]benzopyranones were widely distributed in nature^{1,2)} and exhibit various biological proper-Khellin a furo[1]benzopyranone, isolated from ties. Ammi visanaga (L) is useful in the treatment of angina pectoris, bronchial asthma and as a coronary vasodilator.^{3,4)} Recently it was also employed for the photochemotherapy of vitilago.⁵⁾ The synthesis of naturally occurring furo[1]benzopyranones khellin⁶⁾ and visnagin²⁾ has been reported. Earlier Hosokawa et al., synthesised 2-methylbenzofurans by the oxidative cyclization of sodium salt of o-allylphenols with PdCl₂(PhCN)₂.^{7,8)} In view of the interesting biological activity of furo[1]benzopyranones, we have developed a convenient and efficient route for the synthesis of some novel linear and angular 2-methylfuro[1]benzopyranone derivatives by the oxidative cyclization of sodium salt of 7-hydroxy-6 or 8-allyl-4*H*-1-benzopyran-4-one using $PdCl_2(PhCN)_2$ complex.

Results and Discussion

7-Allyloxy-4H-1-benzopyran-4-ones (**3a**—**d**) were prepared by the allylation of 7-hydroxy-4H-1-benzopyran-4-ones (**2a**—**d**, Table 1). The Claisen rearrangement of **3a**—**d** in refluxing N,N-diethylaniline (210 °C) afforded 7-hydroxy-6 or 8-allyl-4H-1-benzopyran-4-ones (**4a**—**d**, Table 2).

In the rearrangement of **3b** and **c**, the allyl group migrates to 8-position, due to the presence of the halogen substituents at 6-position, whereas in **3d**, due to the presence of methyl at 8-position, the allyl group migrates to 6-position. However, in the Claisen migration of **3a** there is a possibility of the allyl group migrate to 6 or 8-position. Since the aromatic protons of **4a** appeared as AB doublets, it is inferred that the allyl group has migrated to 8-position.

Compounds **4a**—**d** were converted into their corresponding sodium salts (**5a**—**d**). The suspension of the anhydrous sodium salts (**5a**—**d**) in benzene was treated with an equimolar quantity of dichlorobis(benzonitrile)-palladium and refluxed for 2 h. The precipitated metallic palladium was filtered off. The products of the reaction in each case viz., benzonitrile and linear or angular 2-methylfuro[1]benzopyranones (**6a**—**d**, Scheme 1) were separated by column chromatography over silica gel. The yield of reaction product was 95%. There

were no traces of starting materials in the crude reaction product. Compared to the other methods available for the synthesis of linear or angular 2-methyl-furobenzopyranones, $^{5,9,10)}$ the present method affords a facile route with high overall yields. Reactions are easy to perform and proceed under mild conditions. The structures of the cyclization products $\mathbf{6a}$ — \mathbf{d} of an angular 2,7,8-trimethyl-6H-furo[2,3-h][1]benzopyran-6-one ($\mathbf{6a}$), 4-chloro-2,7,8-trimethyl-6H-furo[2,3-h][1]benzopyran-6-one ($\mathbf{6c}$), 4-bromo-2,7,8-trimethyl-6H-furo[2,3-h][1]benzopyran-6-one ($\mathbf{6c}$), and linear 2,6,7-trimethyl-5H-furo[3,2-g][1]benzopyran-5-one ($\mathbf{6d}$) have been established on the basis of spectral data (Table 3).

Experimental

Melting points were determined in sulfuric acid bath and are uncorrected. IR spectra are recorded in KBr on a Shimadzu-435 spectrometer, ¹H NMR spectra were obtained on Varian Gemini-200 MHz spectrometer with TMS as an internal standard. Mass spectra were recorded on Perkin–Elmer Hitachi RDO-62 and MS-30 instrument.

Preparation of 7-Hydroxy-4*H*-1-benzopyran-4-ones (2a—d): General Procedure. 7-Hydroxy-2,3-dimethyl-4*H*-1-benzopyran-4-one¹¹⁾ (2a), 7-hydroxy-2,3,8-trimethyl-4*H*-1-benzopyran-4-one¹²⁾ (2d) were prepared by reported method.

6-Chloro-7-hydroxy-2,3-dimethyl-4H-1-benzopyran-4-one (**2b**), 6-bromo-7-hydroxy-2,3-dimethyl-4H-1-benzopyran-4-one (**2c**) have now been prepared by refluxing **1b**—**c**, acetic anhydride and sodium acetate at 180 °C for 6 h and subsequent hydrolysis with 5% MeOH/HCl. **2a**, mp 281 °C; **2b**, mp 294 °C. **2b**: Calcd for C₁₁H₉O₃Cl: C, 58.78; H, 4.04%. Found: C, 58.72; H, 4.01%. **2c**: Calcd for C₁₁H₉O₃Br: C, 49.24; H, 3.38%. Found: C, 49.19; H, 3.32%.

Preparation of 7-Allyloxy Chromones (3a—d): General Procedure. 7-Allyloxy-2,3,8-trimethyl-4*H*-1-benzopyran-4-one⁵⁾ (3d) was prepared by reported method.

7-Allyloxy-2,3-dimethyl-4H-1-benzopyran-4-one (**3a**) 7-allyloxy-6-chloro-2,3-dimethyl-4H-1-benzopyran-4-one (**3b**), 7-allyloxy-6-bromo-2,3-dimethyl-4H-1-benzopyran-4-one (**3c**), have now been prepared by refluxing **2a**, **2b**, and **2c** respectively, with allyl bromide in acetone K₂CO₃ medium. **3a**: Calcd for C₁₄H₁₄O₃: C, 73.00; H, 6.13%. Found: C, 72.98; H, 6.11%. **3b**: Calcd for C₁₄H₁₃O₃Cl: C, 63.49; H, 4.95%. Found: C, 63.46; H, 4.93%. **3c**: Calcd for C₁₄H₁₃O₃Br: C, 54.53; H, 4.25%. Found: C, 54.51; H, 4.21%.

Preparation of 6 or 8-Allyl-7-hydroxy-4H-1-benzopyran-4-ones (4a—d): General Procedure. 6-Allyl-7-hydroxy-2,3,8-trimethyl-4H-1-benzopyran-4-one⁶⁾ (4d) was prepared by reported method.

8-Allyl-7-hydroxy-2,3-dimethyl-4*H*-1-benzopyran-4-one (**4a**), 8-allyl-6-chloro-7-hydroxy-2,3-dimethyl-4*H*-1-benzopyran-4-one (**4b**), 8-allyl-6-bromo-7-hydroxy-2,3-dimethyl-

Table 1. Physical Constants and Spectral Data of 7-Allyloxy-4H-1-benzopyran-4-ones (3a—d)

Entry	Compound	Mp/°C	$IR \nu (cm^{-1})$		1 H NMR (CDCl ₃) (δ /ppm, J in Hz) (200 MHz)
		$(\mathrm{lit},\mathrm{mp}/^{\circ}\mathrm{C})$	>C=O	>C=C<	
1	3a	97	1640	1615	2.43 (s,3H,H ₃ C-2); 2.11 (s,3H,CH ₃ -3); 8.12 (d,1H,H-5);
					6.77—6.93 (m,2H,H6 and H-8); 4.65 (dd,2H,H-1', J =6.0
					and 11.0 Hz ; 6.13 (m,1H,H-2') ; 5.40 (m,2H,H-3') .
2	3b	138	1635	1615	$2.35 \text{ (s,3H,CH}_3-2); 2.05 \text{ (s,3H,CH}_3-3); 8.15 \text{ (s,1H,H-5)};$
					6.81 (s,1H,H-8); 4.65 (dd,2H,H-1', J =6.0 and 1.0 Hz);
					6.10 (m, 1H,H-2'); 5.40 (m,2H,H-3').
3	3c	147	1640	1620	$2.38 \text{ (s,3H,CH}_3-2); 2.08 \text{ (s,3H,CH}_3-3); 8.12 \text{ (s,1H,H-5)};$
					6.80 (s,1H,H-8); 4.66 (dd,2H,H-1', J =6.0 and 1.0 Hz);
					6.11 (m,1H,H-2'); 5.38 (m,2H,H-3').
4	3d	134	1645	1620	$2.42 \text{ (s,3H,CH}_3-2); 2.10 \text{ (s,3H,CH}_3-3); 8.05 \text{ (d,1H,H-5)},$
		(132 - 134)			J=10.0 Hz); 6.95 (d,1H,H-6, $J=10.0 Hz$); 2.32 (s,3H,CH ₃ -
					8); $4.68 (dd,2H,H-1',J=6.0 \text{ and } 1.0 \text{ Hz}); 6.10 (m,1H,H-1',J=6.0)$
					2'); 5.40 (m,2H,3-H').

 $\hbox{ Table 2. Physical Constants and Spectral Data of 7-Hydroxy-6 or 8-allyl-4 \emph{H}-1-benzopyran-4-ones } (\textbf{4a} - \textbf{d}) \\$

Entry	Compound	Mp/°C	$IR \nu (cm^{-1})$		(-1)	1 H NMR (CDCl ₃) (δ/ppm , J in Hz) (200 MHz)
		$(\mathrm{lit},\mathrm{mp}/^{\circ}\mathrm{C})^{-1}$	О–Н	>C=O	>C=C<	
1	4a	241	3280	1640	1620	2.35 (s,3H,CH ₃ -2); 1.95 (s,3H,CH ₃ -3); 7.65 (d,1H,H-5,
						J=10.0 Hz); 6.92 (d,1H,H-6, $J=10.0 Hz$); 3.52 (m,2H, H-1'); 5.90 (dd,2H,H-3', $J=10.0 and 1.0 Hz$); 4.95 (dd,2H,
						H-3', J =16.0 and 1.0 Hz); 10.20 (s.1H,O-H).
2	4b	258	3250	1640	1620	2.38 (s,3H,CH ₃ -2); 1.96 (s,3H,CH ₃ -3), 7.62 (s,1H,H-5,
						J=10.0 Hz); 3.59 (m,2H,H-1'); 5.91 (m,1H,H-2');
						5.10 (dd,2H,H-3',J=10.0 and 1.0 Hz); 4.99 (dd,2H,
						H-3', J=16.0 and 1.0 Hz).
3	4c	261	3270	1645	1615	2.39 (s,3H,CH ₃ -2); 1.97 (s,3H,CH ₃ -3); 7.64 (s,1H,H-5,
						J=10.0 Hz); 3.49 (m,2H,H-1'); 5.90 (m,1H,H-2'); 5.12 (dd,2H,H-3', $J=10.0$ and 1.0 Hz); 4.99 (dd,2H,
						H-3', $J=16.0$ and 1.0 Hz), 4.99 (dd,211,
4	4d	193	3260	1640	1615	2.46 (s,3H,CH ₃ -2); 2.10 (s,3H,CH ₃ -3); 7.80 (s,1H,H-5,
		(192)				J=10.0 Hz); 2.30 (s,3H,CH ₃ -8); 3.50 (m,2H,H-1'); 6.08
						(m,1H,H-2'); 5.30 $(dd,2H,H-3',J=10.0 and 1.0 Hz)$; 5.09
						(dd,2H,H-3',J=16.0 and 1.0 Hz).

 $\begin{tabular}{ll} Table 3. & Physical Constants and Spectral Data of Angular and Linear 2-Methylfuro [1] benzopyranones (\bf 6a-d) \\ \end{tabular}$

Entry	Compound	Mp/°C	IR $\nu_{\rm max}~({\rm cm}^{-1})$	1 H NMR (CDCl ₃) (δ/ppm , J in Hz) (200 MHz)	Mass
		$(lit, mp/^{\circ}C)$	>C=O		M^+
1	6a	231	1640	2.55 (s,3H,CH ₃ -2); 2.01 (s,3H,CH ₃ -6); 2.45 (s,3H, CH ₃ -5); 6.70 (s,1H,H-3); 8.05 (d,1H,H-8, <i>J</i> =9.0 Hz); 7.43 (d,1H,H-9, <i>J</i> =9.0 Hz).	228
2	6 b	253	1640	2.52 (s,3H,CH ₃ -2); 2.43 (s,3H,CH ₃ -5); 2.06 (s,3H,CH ₃ -6); 6.68 (s,1H,H-3); 7.98 (s,1H,H-8).	262
3	6c	261	1645	2.51 (s,3H,CH ₃ -2); 2.42 (s,3H,CH ₃ -5); 2.04 (s,3H,CH ₃ -6); 6.68 (s,1H,H-3); 7.97 (s,1H,H-8).	306
4	6d	$239 \ (239-241)$	1645	2.56 (s,3H,CH ₃ -2); 2.08 (s,3H,CH ₃ -6); 2.48 (s,3H,CH ₃ -8); 6.46 (s,1H,H-3); 8.15 (s,1H,H-4); 2.45 (s,3H,CH ₃ -9).	242

Scheme 1.

4*H*-1-benzopyran-4-one (**4c**) were prepared by Claisen rearrangement of **3a**—**c** respectively in N,N-diethylaniline at 210 °C. **4a**: Calcd for $C_{14}H_{14}O_3$: C, 73.00; H, 6.13%. Found: C, 72.98; H, 6.11%. **4b**: Calcd for $C_{14}H_{13}O_3Cl$: C, 63.49; H, 4.95%. Found: C, 63.45; H, 4.93%. **4c**: Calcd for $C_{14}H_{13}O_3Br$: C, 54.33; H, 4.25%. Found: C, 54.51; H, 4.21%.

Preparation of Linear (6d) and Angular (6a—c) 2-Methylfuro[1]benzopyranones: General Procedure. A suspension of sodium salt (5a—d, 0.001 mol) in benzene (200 ml) containing PdCl₂(PhCN)₂ (0.001 mol) was stirred at room temperature for 30 min. The suspension became clear and developed intense red color during stirring. The clear red solution was refluxed for 2 h when metallic palladium separated out and the solution turned colorless. Palladium was filtered off the filtrate concentrated, and the products in each case (2-methylfurobenzopyranones and benzonitrile) were separated by column chromatography on silica gel (200 mesh, ACME). Elution with benzene gave benzonitrile and subsequent elution with chloroform gave the 2-methylfurobenzopyranones (6a—d) which recrystallised from benzene as colorless prisms. The yields of 6a—d are 95%. 6a:

Calcd for $C_{14}H_{12}O_3$: C, 73.65; H, 5.30%. Found: C, 73.62; H, 5.27%. **6b**: Calcd for $C_{14}H_{11}O_3C$ l: C, 63.98; H, 4.22%. Found: C, 63.95; H, 4.19%. **6a**: Calcd for $C_{14}H_{11}O_3B$ r: C, 54.89; H, 1.38%. Found: C, 54.86; H, 1.35%.

One of us (Y. J. R.) is thankful to the CSIR, New Delhi for the award of Junior Research Fellowship.

References

- 1) D. K. Chakravorty, S. K. Mukerjee, V. V. S. Murthy, and T. R. Seshadri, *Proc. Indian Acad. Sci.*, Sect. A, **35A**, 34 (1952).
- 2) R. Aneja, S. K. Mukerjee, and T. R. Seshadri, *Tetrahedron*, **3**, 230 (1958).
 - 3) E. Sapth and W. Grumber, Ber., 71, 106 (1938).
- 4) J. R. Clarke and A. Robertson, *J. Chem. Soc.*, **1949**, 302.
- 5) P. Rodighiero, G. Pastrorini, A. Chilin, P. Manzini, and A. Guiotto, *J. Heterocycl. Chem.*, **1988**, 527.
- 6) V. V. S. Murti and T. R. Seshadri, Proc. Indian Acad.

Sic., Sect. A, 30A, 107 (1949).

- 7) T. Hosokawa, K. Maeda, K. Koga, and I. Moritani, Tetrahedron Lett., 1973, 739.
- 8) J. R. Dayle, P. E. Slude, and H. B. Jonessen, "Inorganic Synthesis," ed by E. G. Rochow, McGraw Hill Book, Inc., New York (1960), Vol. 6, p. 218.
 - 9) S. Raychaudhari, T. R. Seshadri, and S. K.

Mukherjee, Indian J. Chem., 10, 370 (1972).

- 10) S. S. Chibber, A. K. Ganjuli, S. K. Mukerjee, and T. R. Seshadri, *Proc. Indian Acad. Sci., Sect. A*, **46A**, 19 (1957).
- 11) S. V. Kostanecki and L. Lloyd, Ber., 34, 2942 (1901).
- 12) P. DaRe and L. Verlicchi, Ann. Chim. (Rome), 46, 904 (1956).